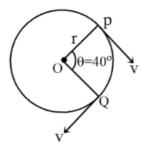
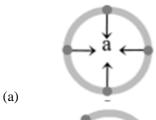


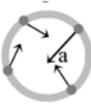
Max. Marks: 60 Date: 27.11.2022


JB 1 MR BATCH PHYSICS: DCT (SET A) Tanica Cincular Mation

				Topics: Cir	`	· · · · · · · · · · · · · · · · · · ·						
1.	A pla	nne is revolving ar	ound the e	earth with a speed	of 100 km/l	n at a constant heig	ht from the	e surface of the ear	th			
	The change in the velocity as it travels half-circle is											
	(a)	200 km/h	(b)	150 km/h	(c)	$100\sqrt{2}$ km/h	(d)	0				
2.	An o	bject is projected	obliquely	θ at an angle θ	to the horiz	ontal with a certain	n velocity.	During its path	of			
	trajec	ctory, what is the ra	atio of mir	nimum to maximu	m radii of tu	rning?						
	(a)	$1:\cos^2\theta$	(b)	$\cos^2\theta:1$	(c)	$\cos^3 \theta : 1$	(d)	$1:\cos^3\theta$				
3.	An o	bject is moving ald	ong a curv	ed path for which	its accelerat	$2\hat{i} + \hat{j} m/s^2$	and its ve	elocity is $(\hat{i} - 3\hat{j})$ n	1/5			
	at an instant. The body is											
	(a) speeding up					speeding down						
	(c)	moving with ur	niform vel	ocity	(d)	moving with uniform acceleration						
4.	Two cars going round curve with speeds one at 90 km/h and other at 15 km/h. Each car experiences sam											
	acceleration. The radii of curves are in the ratio of											
	(a)	4:1	(b)	2:1	(c)	16:1	(d)	36:1				
5.	The l	inear velocity of a	rotating b	oody is given by \bar{N}	$\vec{V} = \vec{\omega} \times \vec{r}$, v	where $\stackrel{\rightarrow}{\omega}$ is the angu	ılar velocit	\vec{r} and \vec{r} is the radi	us			
	vecto	or. The angular vel	locity of a	body is $\vec{\omega} = \hat{i} - 2$	$2\hat{j} + 2\hat{k}$ and	the radius vector \vec{r}	$=4\hat{j}-3\hat{k}$	then $ \vec{v} $ is				
	(a)	$\sqrt{29}$ units	(b)	$\sqrt{31}$ units	(c)	$\sqrt{37}$ units	(d)	$\sqrt{41}$ units				

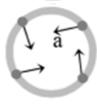
- 6. A body is moving in a circle with a speed of 1 m/s. This speed increases at a constant rate of 2 m/s every second.

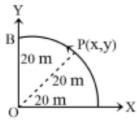

 Assume that the radius of the circle described is 25 m. The total acceleration of the body after 2 s is
 - (a) 2 ms^{-2}
- (b) 25 ms^{-2}
- (c) $\sqrt{5} \text{ ms}^{-2}$
- (d) $\sqrt{7} \text{ ms}^{-2}$
- 7. A particle is moving on a circular path of radius 'r' with uniform speed 'v'. The change in velocity when the particle moves from P to Q is ($\angle POQ = 40^{\circ}$)



- (a) $2v \cos 40^{\circ}$
- (b) $2v \sin 40^{\circ}$
- (c) $2v \sin 20^{\circ}$
- (d) $2v \cos 20^{\circ}$
- 8. A particle moves in a circle of radius 25 cm at 2 revolutions/s. The acceleration of the particle in m/s² is
 - (a) π^2
- (b) $8\pi^2$
- (c) $4\pi^2$
- (d) $2\pi^2$
- 9. A stone tied to the end of a string 100 cm long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in 22s, then the acceleration of the stone is x
 - (a) 16 ms^{-2}
- (b) 4 ms^{-2}
- (c) 12 ms^{-2}
- (d) 8 ms^{-2}
- 10. The magnitude of displacement of a particle moving in a circle of radius a with constant angular speed ω varies with time t is
 - (a) 2a sin ωt
- (b) $2a \sin \frac{\omega t}{2}$
- (c) 2a cos ωt
- (d) $2a\cos\frac{\omega t}{2}$

- A car of mass m moves in a horizontal circular path of radius r metre. At an instant its speed is V m/s and is 11. increasing at a rate of a ms⁻². Then the acceleration of the car is
- (b)
- (c) $\sqrt{a^2 + \left(\frac{V^2}{r}\right)^2}$ (d) $\sqrt{a + \frac{V^2}{r}}$
- 12. A car speeds up in a circular path Moving in anticlockwise direction. Which of the following figures illustrates the net acceleration of the car?




(c)

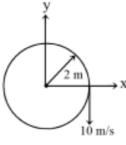
(b)

(d)

13. A point P moves in a counter-clockwise direction on a circular path as shown in the figure. The movement of P is such that it sweeps out a length $s = t^3 + 5$, where s is in metre and t is in seconds. The radius of the path is 20 m. The magnitude acceleration of P at t = 2 s is:

14 ms⁻² (a)

 $13~\mathrm{ms^{-2}}$ (b)


 $12\ ms^{-2}$ (c)

 7.2 ms^{-2} (d)

Space for Rough Work

14. A particle is moving along a circular path in the XY plane. When it crosses the x-axis, it has an acceleration along the path of 1.5 m/s², and is moving with a speed of 10 m/s in the negative y-direction. The total acceleration of the particle is:

- $50\hat{i} 1.5\hat{j} \text{ m/s}^2$ (b) $-50\hat{i} 1.5\hat{j} \text{ m/s}^2$
- (c)
- $10\hat{i} 1.5\hat{j} \,\text{m/s}^2$ (d) $1.5\hat{i} 50\hat{j} \,\text{m/s}^2$
- 15. A particle A moves along a circle of radius of R = 50 cm so that its radius vector r relative to the point O rotates with the constant angular velocity $\omega = 0.40$ rad/s. Then speed of the particle, and the modulus of its total acceleration will be

 $v = 0.4 \text{ m/s}, a = 0.4 \text{ m/s}^2$ (a)

 $v = 0.4 \text{ m/s}, a = 0.32 \text{ m/s}^2$ (b)

 $v = 0.2 \text{ m/s}, a = 0.08 \text{ m/s}^2$ (c)

(d) changing for both v and w w.r.t. time

Max Marks: 60 Date: 27.11.2022

JB 1 MR BATCH CHEMISTRY : DCT (SET A)

Topic: Chemical Bonding + Mole Concept + Periodic Properties

- 16. Which statement(s) is (are) wrong for bond angle?
 - (a) $CH \equiv CH > BF_3 > CH_4$

 $(b) \qquad H_2O > NH_3$

(c) $\stackrel{\oplus}{NH_4} > NH_3 > PCl_5$

- (d) $CO_2 > NH_3 > CH_4$
- 17. Which statement(s) is (are) correct for AB_x type molecule?
 - (a) If the EN of central atom decreases, the bond angle decreases.
 - (b) If the size of central atom increases, the bond angle decreases.
 - (c) If the EN of atom B decreases that bond angle increases.
 - (d) If the EN of atom B decreases, the bond angle decreases.
- 18. Paramagnetic pair(s) among the following is (are)
 - (a) $[BaO_2, NO_2]$

(b) [KO₂, NO]

(c) $[H_2O_2, NO]$

- (d) $K_3[Fe(CN)_6]$, $CuCl_2$
- 19. Which of the following statements is incorrect?
 - (a) NH_3 is more basic than PH_3 .
 - (b) NH₃ has a higher boiling point than that of HF.
 - (c) N_2 is less reactive than P_4 .
 - (d) The dipole moment of NH_3 is less than that of SO_2 .
- 20. If one assumes linear structure instead of bent structure for water, then which one of the following properties cannot be explained?
 - (a) The formation of intermolecular hydrogen bond in water.
 - (b) The high boiling point of water.
 - (c) Solubility of polar compounds in water.
 - (d) Ability of water to form coordinate covalent bond.

21. The EN's of F, Cl, Br and I are 4.0, 3.0, 2.8 and 2.5 respectively. The hydrogen halide with a highest percentage

(a)	HI	(b)	HBr	(c)	HCl	(d)	HF

22. Among the following which is polar?

of ionic character is

- (a) CO_2 (b) SO_2 (c) $BeCl_2$ (d) Cl
- 23. The resultant dipole moment (μ) of two compounds NOF and NO₂F is 1.81 D and 0.47 D respectively. Which dipole moment do you predict?
 - (a) 1.81 D for NO₂F and 0.47 D for NOF
 - (b) 0.47 D for NO₂F and 1.81 D for NOF
 - (c) For both NO₂F and NOF, dipole moment (µ) is 1.81 D
 - (d) For both NO₂F and NOF, dipole moment (µ) is 0.47 D
- 24. Which of the following molecule(s) have dipole moment?
 - I. Trans-pent-2-ene
 - II. cis-hex-3-ene
 - III. 2, 2-Dimethyl propane
 - IV. 2, 2, 3, 3-tetramethyl butane
 - (a) I, II
- (b) II, III
- (c) I, III
- (d) I, IV

- 25. The shapes of PCl_4^{\oplus} , PCl_4^{\odot} and $AsCl_5$ are respectively
 - (a) Square planar, tetrahedral and see-saw.
 - (b) Tetrahedral, see-saw and trigonal bipyramidal.
 - (c) Tetrahedral, square planar and pentagonal bipyramidal.
 - (d) Trigonal bipyramidal, tetrahedral and square pyramidal.
- 26. How many moles of O₂ will be liberated by one mole of CrO₅ is the following reaction:

$$CrO_5 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + H_2O + O_2$$

- (a) 4.5
- (b) 2.5
- (c) 1.25
- (d) None

27. 1 mol of MnO₄²⁻ in neutral aqueous medium dis-propertionates to

(a)
$$\frac{2}{3}$$
 mol of MnO₄[©] and $\frac{1}{3}$ mol of MnO

$$\frac{2}{3}$$
 mol of MnO_4^{\odot} and $\frac{1}{3}$ mol of MnO_2 (b) $\frac{1}{3}$ mol of MnO_4^{\odot} and $\frac{2}{3}$ mol of MnO_2

(c)
$$\frac{1}{3}$$
 mol of Mn₂O₇ and $\frac{2}{3}$ mol of MnO₂

$$\frac{1}{3}$$
 mol of Mn₂O₇ and $\frac{2}{3}$ mol of MnO₂ (d) $\frac{2}{3}$ mol of Mn₂O₇ and $\frac{1}{3}$ mol of MnO₂

If equal volumes of 1 M KMnO₄ and 1M K₂Cr₂O₇ solutions are used to oxidise Fe²⁺ in acidic medium, then Fe²⁺ 28. will be oxidised

(a) More by K₂Cr₂O₇

More by KMnO₄ (b)

(c) Equal in both the cases

The data is insufficient to predict the answer (d)

29. An atom with high EA generally has

> Tendency to form +ve ions (a)

(b) High ionization energy

Large atomic size (c)

Low electron affinity (d)

30. Due to screening effect of electrons in an atom

> (a) IE decreases

(b) IE increases

(c) No change in IE

(d) Attraction of nucleus on the valence electron increases

* * * * *

Max. Marks: 60 Date: 27.11.2022

JB 1 MR BATCH PHYSICS: DCT (SET A) ANSWER KEY

Topics: Circular Motion

1.	(a)	2.	(c)	3.	(b)	4.	(d)	5.	(a)
6.	(c)	7.	(c)	8.	(c)	9.	(a)	10.	(b)
11.	(c)	12.	(d)	13.	(a)	14.	(b)	15.	(b)

Max Marks: 60 Date: 27.11.2022

JB 1 MR BATCH CHEMISTRY : DCT (SET A) ANSWER KEY

Topic: Chemical Bonding + Mole Concept + Periodic Properties

16.	(b, d)	17.	(a, b, c)	18.	(b, d)	19.	(b)	20.	(c)
21.	(d)	22.	(b)	23.	(b)	24.	(a)	25.	(b)
26.	(d)	27.	(a)	28.	(a)	29.	(b)	30.	(a)